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TECHNICAL MEMORANDUM X-64859

SIMILITUDE REQUIREMENTS FOR HYPERSONIC,
RAREFIED, NONEQUILIBRIUM FLOW

I. INTRODUCTION

To determine the thermal protection system required for the Space

Shuttle, accurate predictions of the heat transfer must be made from wind

tunnel data. The heat transfer in the transitional flow regime, between

continuum and free molecular flow, with nonequilibrium chemistry and

vibration is an important part of the total heating to the Shuttle External

Tank. For the ascent of the External Tank using the Rockwell International

PRR Space Shuttle configuration, the preliminary estimate of the local

heating rate is largest during the transitional flow regime for points on

the ogival forebody. Thus, the prediction of aeroheating in the transi-

tional zone is of great interest. If the proper similarity requirements

are duplicated in the wind tunnel, the heat transfer coefficient on the

flight vehicle can be obtained.

Similitude requirements have been established for inviscid, hypersonic

small disturbance flows by Hayes and Probstein (Ref. 1), extended to blunted

bodies with the blast wave analogy by Cheng (Ref. 2), and further extended

to include real gas effects by Inger (Ref. 3). Using the thin shock layer

approximation, Cheng (Ref. 4) extended his original work to include viscous

effects. However, in the transitional flow regime a simple flow model is

not appropriate to describe the viscous, nonequilibrium phenomenon.

Jain (Ref. 5) shows that the thin layer approximation fails to give correct

results in the fully merged flow regime; but, that the entire Navier-Stokes

equations are appropriate from the surface of the body to the free stream

for flow from the continuum regime through the fully merged regime. Thus,

the entire Navier-Stokes equations will be nondimensionalized to indicate

the similarity parameters.



II. SIMILARITY REQUIREMENTS

For locations near the stagnation point the basic equations for a

multicomponent mixture of chemically reacting gases made up of N, 0, N2,

02, NO, NO+, and e are written in spherical coordinates. By neglecting

external body forces and the radiative heat flux in comparison to the

convective heat flux (good for small nose radii, see Ref. 6) and using

Fick's law, the equations are nondimensionalized. The boundary con-

ditions are also nondimensionalized assuming a catalytic wall with no

slip conditions. For a diatomic gas the slip conditions have little

effect on the heat transfer, see Ref. 5.

The heat transfer coefficient, written in a functional relationship,

for the stagnation region is

CH = CH (8; Reo, Pr, Le, 7, M. , T o , Tw, XRj' KRj, Kcj, Kcj ,vi'

v2i' K .i) Species i = 1, .... N (1)

Reaction j = 1, .... N

where strict similarity requires the duplication of the following:

(1) Angle from the stagnation point, 0; (2) Reynolds number, Reo =

p0 It% R/go, based on the free stream density and velocity, body radius,

and viscosity corresponding to the free stream total temperature; (3)

Prandtl number, Pr; (4) Lewis number, Le; (5) ratio of specific heats,

Y; (6) free stream Mach number, Mo ; (7) free stream total temperature,

T ; (8) wall temperature, T ; (9) ratio of activation temperature for

chemical reactions to total temperature, XRj; (10) ratio of residence

time to chemical relaxation time, KRj = (R/U.)/(I/p Cfj To 7fJ), where

Cfj is the reaction rate constant in the forward direction and nfj is the

reaction rate temperature exponent; (11) ratio of forward to backward

reaction rate for two, K j, and three body reactions, Kcj = K cj/P,

(12) ratio of activation temperature for vibration: and molecular constant to

To , i.e. ,Avi v2 i; and (13) ratio of residence time to vibrational

relaxation time, Kvi = (R/U. )/(Klvi T5/6/P U2 ), where Kv i is a

constant which depends on the physical properties of the molecule.
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If air is used for the test gas; y, Pr, and Le will be essentially

the same for wind tunnel and flight conditions, due to the relative in-

variance of these quantities with small differences in temperature and

pressure. By using a similar gas the molecular properties and the reaction

constants are identical for wind tunnel and flight conditions. The re-

maining parameters to be duplicated are

CH = CH [9; Re0 (p U, R/Io), M. (U/T. ), To, Tw, XRj(To),

KRj (0,R/U, T0 f j ) , Kcj (T 5 / 6 ) ]  Species i =  ,.... N (2)

Reaction j = 1,.... N

It is obvious from Equation (2) that, if the free stream thermodynamic

state and free stream velocity are duplicated, the wind tunnel model must

be the same size as the actual vehicle.

Using the free stream velocity and the stagnation temperature as

similitude requirements, the free stream temperature is, ideally, also

simulated and Equation (2) reduces to

C1H = CH [9; U,,, T , Tw, Re & KRj & K. (P.R), cj ()]* (3)

By simulating the free stream velocity for hypersonic, rarefied flight,

one has, in essence, simulated the total temperature. The free stream

temperature may not be that of flight, but for many existing wind tunnels

these low temperatures cannot be obtained. Matching the free stream

temperature is relatively unimportant (Ref. 7). Then Equation (3)

simplifies to

CH = CH [9; U,, Tw, Reo & KRj & Kvi (DPR), Kcj 0.)]. (4)

Once again similitude is impossible unless further relaxation of similarity

requirements are made.

At high altitudes the binary scaling assumption can be made with

confidence. Assuming that the nonequilibrium process is described by

two body reactions is equivalent to assuming that Kcj is large and

independent of density, which yields the final similarity relation

CH = CH (@; U., Tw, Pm R). (5)

The last parameter in Equation (5) is proportional to the number of

molecular collisions in a characteristic distance R. To duplicate a
3



nonequilibrium relaxation the number of collisions in a distance R
vehicle

in flight must be the same as the number of collisions in a distance

R in the wind tunnel. Hence, the parameter pR is characteristic of
model
the nonequilibrium vibration, chemistry and even radiative heat transfer

(see Ref. 8).

A similar approach to determine the nonequilibrium similitude param-

eters for the heat transfer on a sharp cone yields essentially the same

results as Equation (5), i.e., at a point L down the body

CH = CH (c', U., Tw, P. L) (6)

where 9 is the cone half angle.

To include effects of oxygen predissociation in the nozzle, the use

of an oxygen rich flow can be utilized to account for oxygen freezing and

not recombining as in the equilibrium flight situation.

III. DATA CORRELATION

The heat transfer at locations downstream of the stagnation point of

blunt nosed slender bodies, which still exhibit the nonequilibrium relax-

ation process originating from the stagnation point, will now be considered.

The stagnation flow freezes in the rapid expansion around the blunt nose

and its flow characteristics near the sonic line are indicative of the

amount of heat transfer further downstream. When freezing occurs, the

chemical enthalpy becomes unavailable for conversion to kinetic energy

until much further downstream when equilibrium is achieved. The frozen

situation is indicative of blunt nosed slender bodies while the equilibrium

case corresponds to sharp cone flow for the same cone half angle.

An estimate is made of the reduction in heat transfer at a point

immediately downstream of the stagnation point due to the nose bluntness-

induced freezing of chemical energy. The estimate for the blunt nosed,

conical body heat transfer coefficient in terms of the sharp cone value

for the same conditions can be related to the enthalpy by

CH blunt/CH sharp U hblunt/hsharp = hnot frozen /hequilibrium (7)

The expressions for enthalpy are easily written for a vibrationally excited

gas made up of N2, 02, N and 0 assuming that there is neither any ionization

nor any electronic excitation. Two cases are examined: (1) the case where
4



oxygen is completely dissociated, and (2) the case where oxygen and

nitrogen are completely dissociated. Case (1) corresponds to rarefied

flow with temperatures behind the shock from about 4,000 OK to 5,000 OK

and Equation (7) gives values from 0.59 to 0.64. Case (2) corresponds

to rarefied flow with temperatures from about 6,000 OK to 12,000 OK and

Equation (7) gives values from 0.23 to 0.37.

The spread of CH blunt/CH sharp from 0.23 to 0.64 for case (1) and

(2) predicts the lowest value before ionization. As the flow reaches

equilibrium far downstream of the nose the ratio approaches 1.0. Since

more sharp cone data exists than blunt cone data for low Reynolds numbers,

this range of 0.23 to 1.0 gives a rough estimate of the value for CH blunt

and an idea of the degree of dissociation.

Figures 1 and 2 show the heat transfer coefficient in terms of the

rarefaction parameter for sharp and blunt cones, respectively, Ref. 9 -

11. For design purposes least squares correlations of the data are

obtained in the form
3

LOG CH (1-H /H )/SIN 9c] =s as (LOG10  )s (8)

where H is the total enthalpy,

X = Remj/(1 Y C* COS 9) = (PO L) Tr/ (U, rCOS c' (9)

Re, = p, U, L/ , (10)

C* = r Tj.pT r ' (11)

T T + (T -T )/2 - T COS2 9 /3 (12)
r w 0 w o c

and for sharp cones ao = -0.34407400, al = -0.34912983, a2 = -0.10445498,

and a3 = +0.022766463 while for blunt cones ao = -0.66125881, al = -0.33391435,
a2 = -0.035024979, and a3 = +0.0072725000. Note that the rarefaction param-

eter in Equation (9) can be written in terms of the similarity parameters

discussed earlier.

The estimates of the heat transfer coefficient from Equation (7) are

shown in Figure 3 along with the curve fit for sharp and blunt cones. For

large Reynolds numbers the nonequilibrium effects are not to prevalent;

however, for values of L 10 the gas appears to be completely dissociated

in 02 and partially dissociated in N2. The band of data for blunt nosed

cones is all above the value CH blunt = .37 CH sharp and since there is 5



very little dependence upon the amount of nose bluntness, all blunt cone

values for CH can be described by Equation (8) or the inequality .37 L

CH blunt/CH sharp 1.

IV. CONCLUSIONS

In summary, the duplication of hypersonic, rarefied blunt nose and

sharp nose heat transfer requires the use of air over a geometrically

similar model with the same free stream velocity, wall temperature, and

product of free stream density and characteristic dimension. This is

based on the binary scaling assumption.

Estimates of the heat transfer coefficient on blunt nosed cones are

found to be in the range from .37 to 1.0 (as the flow relaxes) times the

value on sharp nosed cones for the same half angle and distance downstream.

Physically, this reduction is due to the nose bluntness-induced freezing

of chemical energy. Least squares correlations are also presented for

sharp and blunt cones. These correlations may be utilized for preliminary

estimates of hypersonic aeroheating in the transitional flow regime.
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